S K Madhukar ADG (NT)

IPv4 was not designed with security in mind.

- **Packet Sniffing:** Due to network topology, IP packets sent from a source to a specific destination can also be read by other nodes, which can then get hold of the payload (for example, passwords or other private information).
- **IP Spoofing:** IP addresses can be very easily spoofed both to attack those services whose authentication is based on the sender's address (as the rlogin service or several WWW servers).
- **Connection Hijacking:** Whole IP packets can be forged to appear as legal packets coming from one of the two communicating partners, to insert wrong data in an existing channel.

- Shortage of IP Address : Lack of visibility and transparency
- Data is open to all : No Confidentiality
- Not Designed for any inbuilt Security Feature
- Inherent absence of any tool to ensure integrity of the data
- Small Subnet address space helps quick Scanning of Port : Vulnerable to attacks
- No provision of Load Balancing helps to achieve Denial of Service (DoS) attack

- Flood network with pings (ICMP echo replies) with
- IP destination address = directed network broadcast and
- IP source address = target IP address (spoofed IP address).
- Consumption of target network bandwidth and target processing power.

Procedure:

Send a TCP SYN packet with spoofed IP addresses where destination and source IP address are set to the target's IP address.

Effect:

Target sends ACK to itself creating an ACK war.

Counter measures:

OS patches.

Architectural vulnerability of IPv4 is the broadcast flooding attack or Smurf attack

There is no broadcast in IPv6 & first hop Security can be enforced.

IPv4: 20 Bytes + Options

IPv6: 40 Bytes + Extension Header

IPv4 Header

IPv6 Header

Version	IHL	Type of Service	Total Length		Version	ו	Traffic Class	Flow Label	
Identification		Flags	Fragment Offset				Next		
Time to	Live	Protocol	Heade	er Checksum	Payload Length		Header	Hop Limit	
Source Address					Source Address				
Destination Address									
Options			Padding						
							Destinat	ion Addres	S

Malicious Code Distribution over network

Small Address Space of Ipv4 can facilitate Malicious code Implantation/Distribution

Huge Address Space of IPv6 make this difficult

ARP Poisoning and ICMP redirect

Man in the Middle Attack

IPv4's lack of proper authentication mechanism may facilitate this in combination of ARP Poisoning and ICMP redirects.

In IPv6, ARP is not used and proper authentication is essential.

Fragmentation Attack

Fragmentation and Reassembly in IPv4 may facilitate such attacks like 'Ping of Death' etc

In IPv6, fragmentation is not allowed. Packet size is fixed for 'end to end'.

Replay Attack

No mechanism is available in IPv4 to check such attacks

In IPv6, Sliding Window mechanism is followed.

Internet Security Issues

Viruses and Worms :

Viruses and Email, IM worms: IPv6 brings in identification.

Other worms:

IPv4: reliance on network scanning

IPv6: not so easy

IPv4 best practices around worm detection and mitigation remain valid.

IPS systems and Anti-viruses will not change.

IPv4 was not designed with security in mind.

In IPv4, Security is implemented in:

In Applications – HTTPS, IMAPS, SSH etc.

IPsec tunnels

Internet Security Issues

IPsec Services

Network approach

Internet Security Issues

IPv6 IPSec:

- **Applies to both IPv4 and IPv6:**
 - Mandatory for IPv6
 - Optional for IPv4
- Applicable to use over LANs, across public &
 - private WANs, & for the Internet
- **IPSec is a security framework**
 - Provides suit of security protocols
 - Secures a pair of communicating entities
 - -Two different modes: Transport mode (host-tohost) and Tunnel Mode (Gateway-to-Gateway or Gateway-to-host)

Services Provided by IPsec

Authentication – ensure the identity of an entity (integrity) and replay protection

Confidentiality – protection of data from unauthorized disclosure

Key Management – generation, exchange, storage, safeguarding, etc. of keys in a public key cryptosystem

Internet Security Issues

IPsec Services

Authentication: AH (Authentication Header - RFC 4302) Confidentiality: ESP (Encapsulating Security Payload - RFC 4303)

Key management: IKEv2 (Internet Key Exchange - RFC4306)

When two computers (peers) want to communicate using IPSec, they mutually authenticate with each other first and then negotiate how to encrypt and digitally sign traffic they exchange. These IPSec communication sessions are called security associations (SAs).

IPv6 IPsec Protocol

IPsec AH

IPv6 AH Packet Format

IPv6 Header	Hop-by-Hop Routing	Authentication Header	Other Headers	Higher Level Protocol Data
-------------	-----------------------	--------------------------	---------------	-------------------------------

IPv6 AH Header Format

Next Header	Length	Reserved				
Security Parameters Index						
Authentication Data (variable number of 32-bit words)						

IPv6 Header	Routing Header	ESP Header	Fragment of TCP
Next Header	Next Header	Next Header	Heade
= Routing	= ESP	= TCP	r+ Data

- IPSec is optional in IPv4
- Requirement in IPv6

Questions .. ?

Internet Security Issues

IPv4 - NAT breaks end-to-end network security
IPv6 - Huge address range – No need of NAT
Reconnaissance In IPv6:

Default subnets in IPv6 have 2⁶⁴ addresses
Scan with 10 Mpps will take more than 50 000 years
Ping sweeps on IPv6 networks are not possible

Port Scanning and other Reconnaissance Attack

2⁸ hosts X 1sec => 4.267 Minutes

2⁶⁴ hosts X 1sec => 5.8 Th Th Yrs

Scanning is almost impossible in case of IPv6

Additional Feature Available in IPv6

<u>IPSec</u>

➤ Authentication Header (AH)

Encapsulation Security Protocol (ESPO)

Internet Key Exchange (IKE)

Authentication Header (AH)

Source Authentication

Data Integraty

Encapsulation Security Protocol (ESP)

➤ Authentication

Data Integrity

➢ Confidentiality

IPv6 Header	Routing Header	ESP Header	Fragment of TCP
Next Header	Next Header	Next Header	Heade
= Routing	= ESP	= TCP	r+ Data

Internet Key Exchange (IKE)

Initial Functionality and Negotiating between End to End Node

Keep track of information so that the security is guaranteed